Hadamard type inequalities via fractional calculus in the space of exp-convex functions and applications

نویسندگان

چکیده

In this article, we study basic properties of exp-convex functions and establish the corresponding Hadamard type integral inequalities along with fractional operators. A comparative analysis between exp-convexity classic convexity is discussed. Furthermore, several related identities estimation upper bounds involved operators are proved. addition, some indispensable propositions associated special means allocated to illustrate usefulness our main results. Besides, Mittag-Leffler convex weaker than also presented. For more information see https://ejde.math.txstate.edu/Volumes/2021/33/abstr.html

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractional Hermite-Hadamard type inequalities for n-times log-convex functions

In this paper, we establish some Hermite-Hadamard type inequalities for function whose n-th derivatives are logarithmically convex by using Riemann-Liouville integral operator.

متن کامل

Hermite-Hadamard Type Inequalities for MφA-Convex Functions

This article deals with the different classes of convexity and generalizations. Firstly, we reveal the new generalization of the definition of convexity that can reduce many order of convexity. We have showed features of algebra for this new convex function. Then after we have constituted Hermite-Hadamard type inequalities for this class of functions. Finally the identity has been revealed for ...

متن کامل

On Some Hermite-Hadamard Type Inequalities for Convex Functions via Hadamard Fractional Integrals

The well-known Hermite-Hadamard integral inequality was established by Hermite at the end of 19th century (see [1]). There are many recent contributions to improve this inequality, please refer to [2,3,4,5,6] and references therein. It is worth noting that there are some interesting results about Hermite-Hadamard inequalities via fractional integrals according to the corresponding integral equa...

متن کامل

A generalized form of the Hermite-Hadamard-Fejer type inequalities involving fractional integral for co-ordinated convex functions

Recently, a general class of the Hermit--Hadamard-Fejer inequality on convex functions is studied in [H. Budak, March 2019, 74:29, textit{Results in Mathematics}]. In this paper, we establish a generalization of Hermit--Hadamard--Fejer inequality for fractional integral based on co-ordinated convex functions.Our results generalize and improve several inequalities obtained in earlier studies.

متن کامل

On new inequalities of Hermite–Hadamard–Fejer type for harmonically convex functions via fractional integrals

In this paper, firstly, new Hermite-Hadamard type inequalities for harmonically convex functions in fractional integral forms are given. Secondly, Hermite-Hadamard-Fejer inequalities for harmonically convex functions in fractional integral forms are built. Finally, an integral identity and some Hermite-Hadamard-Fejer type integral inequalities for harmonically convex functions in fractional int...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Differential Equations

سال: 2021

ISSN: ['1072-6691']

DOI: https://doi.org/10.58997/ejde.2021.33